

 IUSS HEALTH

FACILITY GUIDES

Facility Assembly

Schedule Toolkit

(FAST) briefing tool

[Proposal V.3]

September 2014

Task Team: D:02.2

Supported by:

Document tracking

Version Date Name

Proposal V.2 July 2014 Dirk Conradie

Proposal V.3 September 2014 Dirk Conradie

INFORMATION NOTES

Form: Health facility guides

Status: Proposal V.3, September 2014

Title: Facility Assembly Schedule

Toolkit (FAST) briefing tool
Description: FAST is a case-based reasoning and rule-based drag-and-drop software tool

that enables the briefing team to quickly assemble a schedule of

accommodation by using predefined or user-defined assemblies and compare

it against a norm or against other comparable precedent facilities.

Reference: CSIR 59C1119 D:02.2 - 001

Authors: IUSS N and S task group D:02.2

Stakeholders: National Department of Health, Provincial Departments of Health and Public

Works

Endorsements: The document is endorsed by the CSIR

Endorsements pending:
Submitted to the IUSS Norms and Standards Working Group for endorsement

Supersedes: N/A

Accessing of these guides

This publication is received by the National Department of Health (NDoH), IUSS Steering Committee

Chairman, Dr Massoud Shaker and Acting Cluster Manager: Health Facilities and Infrastructure

Management, Mr Ndinannyi Mphaphuli. Feedback is welcome.

The CSIR and the NDoH retain the moral rights conferred upon them as author by section 20(1) of the

Copyright Act, No. 98 of 1978, as amended. Use of text, figures or illustrations from this report in any

future documentation, media reports, publications, competition entries and advertising or marketing

material is solely at the discretion of the Health Infrastructure Norms Advisory Committee and should

clearly reference the source. This publication may not be altered without the express permission of the

Health Infrastructure Norms Advisory Committee. This document (or its updates) is available freely at

www.iussonline.co.za or the forthcoming Department webportal.

Application and development process

These IUSS voluntary standard/ guidance documents have been prepared as national Guidelines,

Norms and Standards by the National Department of Health for the benefit of all South Africans. They are

for use by those involved in the procurement, design, management and commissioning of public

healthcare infrastructure. It may also be useful information and reference to private sector healthcare

providers.

Use of the guidance in this documentation does not dissolve professional responsibilities of the

implementing parties, and it remains incumbent on the relevant authorities and professionals to ensure

that these are applied with due diligence, and where appropriate, deviations processes are exercised.

The development process adopted by the IUSS team was to consolidate information from a range of

sources including local and international literature, expert opinion, practice and expert group

workshop/s into a first level discussion status document. This was then released for public comment

through the project website, as well as national and provincial channels. Feedback and further

development was consolidated into a second level development status document which again was

released for comment and rigorous technical review. Further feedback was incorporated into proposal

status documents and formally submitted to the National Department of Health. Once signed off, the

documents have been gazetted, at which stage documents reach approved status.

At all development stages documents may go through various drafts and will be assigned a version

number and date. The National Department of Health will establish a Health Infrastructure Norms

Advisory Committee, which will be responsible for the periodic review and formal update of documents

and tools. Documents and tools should therefore always be retrieved from the website repository

www.iussonline.co.za or Department webportal (forthcoming) to ensure that the latest version is being

used.

The guidelines are for public reference information and for application by Provincial Departments of

Health in the planning and implementation of public sector health facilities. The approved guidelines will

be applicable to the planning, design and implementation of all new public-sector building projects

(including additions and alterations to existing facilities). Any deviations from the voluntary

standards are to be motivated during the Infrastructure Delivery Management Systems (IDMS) gateway

approval process. The guidelines should not be seen as necessitating the alteration and upgrading

of any existing healthcare facilities.

Acknowledgements

This publication has been funded by the NDoH.

Acknowledgements

Principle author Dr D.C.U Conradie

Focus Areas 1 and 5 – Norms and Standards, Cost Norms Working Group

Consultants that measured the list of facilities listed below, specifically Deon Steyn and Claude Kraëmer

from SCION Architects and Project Management, and Bruce and Bryan Brinkman from B4 Architects that

over and above their measuring assignment also designed a hypothetical hospital.

The software is the result of the input of discussions with many people in various task teams of the IUSS

project. The following individuals deserve special mention:

Carlien Steyn (quantity surveyor)

Hennie Cloete (NDoH)

Edwina Fleming (CSIR)

Richard Hussey (NDoH)

Magda Coetzer (NDoH)

Geoff Abbott (CSIR)

Peta de Jager (CSIR)

Alex van den Berg (architect)

Acknowledgements also to Janine Smit the editor, Sheldon Bole, Claire du Trevou, Kumirai Tichaona and

Mokete Mokete

The facilities listed below have been analysed in detail by means of the CSIR’s functional space

classification and department classification to inform the types and sizes of different spaces, space

assemblies, departments and the fundamental relationships between the four main space categories of

workspace, workspace support, core and structure:

• Gamopedi Clinic

• Grassy Park Clinic

• Holy Cross Clinic

• Holy Cross Hospital

• Hypothetical medical ward (Brinkman)

• Johan Deo Clinic

• Khayelitsha District Hospital

• Kimberley Mental Health Facility

• Kwanokuthula CHC

• Large clinic

• Mitchells Plain District Hospital

• Mitchells Plain Ward

• Moloto Clinic

• Moses Kotane Hospital

• Natalspruit Hospital

• Hypothetical NDoH medical ward

• Hypothetical NDoH mental health ward

• Paarl Hospital

• Small clinic

• Uzimkulu Clinic

• Valkenberg Hospital

• Worcester Hospital

• Waterfall Hospital operating theatres

The abovementioned facilities provided useful insights into the current space usage patterns and

provided realistic scalability and testing for the software development.

Table of contents

FAST USER GUIDE SOFTWARE CONVENTIONS .. IV

OVERVIEW .. VI

COLOURS LEGEND .. VII

PART A – SOFTWARE DESIGN PHILOSOPHY ... 1

Introduction ... 1

The case-based reasoning (CBR) aspect of FAST .. 2

The disadvantages and caveats of case-based reasoning .. 3

The rule-based reasoning (RBR) aspect of FAST ... 3

CBR compared to other methods .. 4

Design and planning principles .. 6

General design and planning principles .. 6

PART B – USE OF THE FAST SOFTWARE ... 7

Login .. 7

Define facility ... 7

Space assembly dashboard (create design menu item) .. 9

Assembly design from ROOM DETAIL LIBRARY .. 9

Assemble design from ASSEMBLY LIBRARY .. 10

Use of DESIGN COMPARATOR .. 11

Create template design target .. 13

Delete actions ... 14

Space target dashboard (define design targets menu item) .. 18

THE ESPACE PARAMETRIC RULE DEFINITION AND AD HOC SPATIAL ANALYSIS

LANGUAGE ... 21

Introduction ... 21

The ESPACE interactive language .. 22

How to develop an ESPACE applet ... 24

STEP 1: Declare applet variables ... 24

STEP 2: Calculate % core space ... 25

STEP 3: Calculate result to be returned .. 25

Example of an ESPACE applet .. 30

APPENDIX A – FORMAL ESPACE LANGUAGE SPECIFICATION .. 34

APPENDIX B - INTERFACING TO OTHER SYSTEMS .. 36

APPENDIX C – FUNCTIONAL SPACE CLASSIFICATION .. 40

APPENDIX D – DEPARTMENT CLASSIFICATION .. 59

REFERENCES ... 67

List of figures

Figure 1: The IUSS strategic planning tools ... vi

Figure 2: A typical example of the FAST drag-and-drop interface .. 1

Figure 3: Case-based reasoning compared to concept selection (collated by author from Kolodner (1993:18),

Ulrich et al. (1995) and Pugh (1996)) .. 5

Figure 4: FAST main form. Provides access to all other features ... 7

Figure 5: Current Health Facility form that is used to define the main characteristics of the design 8

Figure 6: Create a design from ROOM DETAIL LIBRARY (Drag from 1 and Drop at 2 or 3) 9

Figure 7: FAST drawing display of room AAAD, a four-bed unit, excluding en suite that is 42.21 m² 10

Figure 8: Create a design from the ASSEMBLY LIBRARY (Drag from 1 and Drop at any position 2) 11

Figure 9: The FAST DESIGN COMPARATOR allows convenient comparison between two designs...................... 12

Figure 10: Select a design from the design repository for insertion into the DESIGN COMPARATOR 13

Figure 11: Create a new functional unit design target from a design assembly. (Drag from 1 and Drop at

position 2) ... 14

Figure 12: Delete a specific room from the DESIGN ASSEMBLY (Step 1 and 2) (Drag from 1 and Drop at 2) 15

Figure 13: Delete specific design assembly (Step 1 and 2) (Drag from 1 and Drop at 2) 15

Figure 14: Delete entire design assembly (Step 1 and 2) (Drag from 1 and Drop at 2) 16

Figure 15: Delete design comparator (Step 1 and 2) (Drag from 1 and Drop at 2) .. 16

Figure 16: Delete assembly library item (Step 1 and 2) (Drag from 1 and Drop at 2).. 17

Figure 17: Delete entire project permanently from the design repository (Step 1 and 2) (Drag from 1 and Drop

at 2) ... 17

Figure 18: Delete entire project from design repository (Step 3 and 4) (Drag from 3 and Drop at 4) 18

Figure 19: Create design target from FUNCTIONAL UNIT LIST phase 1 (Drag from 1 and Drop at 2) 19

Figure 20: Create design target from FUNCTIONAL UNIT LIST phase 2 .. 20

Figure 21: FAST interactive rule and ad hoc query builder ... 22

Figure 22: Result of query in interactive environment ... 23

Figure 23: The yellow highlighted block indicates that the area in m² is the result of a resolved rule 24

Figure 24: ESPACE applet to calculate department areas .. 31

Figure 25: The applet section of the Interactive Query Builder ... 32

Figure 26: The FAST comma delimited interface standard ... 36

Figure 27: Select a FAST comma delimited import file ... 38

Figure 28: Select a comma delimited file with a .txt extension .. 39

Figure 29: Confirm import of FAST comma delimited import file .. 39

List of tables

Table 1: FAST User Guide software conventions ... iv

Table 2: Entering data in FAST .. v

Table 3: IUSS: General hospital support (GNS) reference documents ... vii

Table 4: A comparison between case-based, rule-based and model-based reasoning (collated by author) 5

Table 5: Implementation of Facility Level in FAST .. 8

Table 6: Summary of ESPACE functions .. 26

Table 7: The FAST comma delimited exchange format .. 36

Table 8: Example of a FAST comma delimited file that contains all the spaces for a small clinic 37

FAST User Guide software conventions

A wide range of terms are used to describe specific aspects of FAST. Many of these are used in slightly

different contexts by different people. To ensure that there is no uncertainty regarding the intended meaning

in FAST, lists of specific terms used in FAST are included.

Table 1: FAST User Guide software conventions

Convention Use

This is a FAST action. When a user drops

an object on this target, then a specific

action will be executed depending on the

type of object. Many combinations are

possible. There are currently six actions

that can be combined with objects.

All objects in FAST are coloured light blue

(cyan). You can drag this object to another

object target, or to an action, or vice versa.

Drag Press the left mouse button and hold

down until object target is reached.

FAST drag-in-progress icon. When a user

invokes a drag on a FAST object, this icon

is displayed.

Drop Position cursor over object target and

release left button.

<Space_ASSEMBLY> Microsoft Access database table name.

You can use Microsoft Excel directly to

extract data from FAST for external

analysis purposes. <Space_ASSEMBLY> is

the most important table, because the

briefing space list is assembled here.

This target example indicates that the

number of beds are underprovided, being

an actual 108 against a target of 120. The

actual m² area is also smaller than the

minimum in the range that should be

between 1 254.96 and 1 387.06 m² in this

example.

This target example indicates that the

number of beds are overprovided, being

an actual 76 against a target of 70. The

actual m² area is also larger than the

maximum in the range that should be

886.45 m², to 979.77 m² in this example.

This target example indicates that the

number of consulting rooms is on target,

being 2 against a target of 2. The actual m²

area is also within the range that should

be between 22.82 m² and 25.22 m².

The following basic data entry rules should be adhered to in order to facilitate sorting and retrieval of data:

• Entries should be done in English (facility name and descriptions).

• There should be no spaces leading any entry.

• Capital letters should preferably be used for classifications and codes.

Table 2: Entering data in FAST

Data type Use

(AREA) This is an area in m² used in cases such as a space area.

(CLASS) This is a classification code that should not exceed 24 characters for the

functional space classification, and 48 characters for the department

classification.

(CODE) This is a code that should not exceed 24 characters and is for example used for

the ASSEMBLY LIBRARY, Assembly Code.

(RULE NAME) This is the rule name and could be up to 48 characters long.

(DESCRIPTION) This is a general description and can be up to 255 characters long.

(RULE) Is a code fragment or applet that executes interactively in the FAST Interactive

Rule/Query Builder or fires during the allocation of derived spaces in the FAST

DESIGN ASSEMBLY panel.

It is a memo field type that can contain 65 535 characters when entering data

through the user interface, i.e. applet development.

(TELEPHONE NUMBER) This is a structured field that is used for telephone numbers.

(CELLULAR NUMBER) This is a structured field that is used for cellular numbers.

(LOOKUP CODE) This is a code that is looked up from another definition table. Normally a

friendly name is displayed while the code is stored in the database. In FAST the

code does not exceed 64 characters.

(LATITUDE DEGREE) It is the latitude degree that is a whole number in the range 0 to 90.

(LATITUDE MINUTES) It is the minute part of the latitude and is a whole number in the range 0 to 59.

(LATITUDE SECONDS) It is the second part of the latitude and is a whole number in the range 0 to 59.

(LONGITUDE DEGREE) It is the longitude degree that is a whole number in the range 0 to 180.

(LONGITUDE MINUTES)

It is the minute part of the longitude and is a whole number in the range 0 to

59.

(LONGITUDE SECONDS) It is the second part of the longitude and is a whole number in the range 0 to

59.

(DECIMAL DEGREE) It is a field that contains a degree such as site slope. It is a decimal with two-

decimal accuracy.

OVERVIEW

This document describes the software design philosophy and operation of the Facility Assembly Schedule

Toolkit (FAST) that is used to prepare and check the accommodation schedule of new facilities, as well as

additions and alterations to existing facilities against a given set of target norms. FAST provides output to the

Departmental Cost Calculator to estimate the construction cost. It is part of a hierarchy of strategic software

tools that start with the Infrastructure Optimisation Planning Toolkit (IOPT) at the top, the Planning Unit

Calculator/Translator, Order of Magnitude Cost Calculator, Facility Assembly Schedule Toolkit and

Departmental Cost Calculator (Figure 1).

Figure 1: The IUSS strategic planning tools

The main input into FAST originates from the Planning Unit Calculator in the form of functional planning units.

Once a facility has been defined, FAST is able to provide output to the Departmental Cost Calculator where the

construction cost can be estimated (Figure 1).

Users of FAST should refer to all other IUSS documents in order to understand the design philosophy for the

Clinical Services, Support Services, Healthcare Environment/Cross-cutting Issues and Procurement and

Operation. You will notice in Table 3 that all aspects are important, placing a significant burden on the design

team and the FAST user. However, the case-based reasoning (CBR) and rule-based design of FAST are intended

to make it as easy as possible for the user by reminding him/her of the requirements by inter alia providing

contextual spatial assemblies.

Table 3: IUSS: General hospital support (GNS) reference documents

CLINICAL SERVICES

E
ss

e
n

ti
a

l

R
e

co
m

m
e

n
d

e
d

SUPPORT

SERVICES
E

ss
e

n
ti

a
l

R
e

co
m

m
e

n
d

e
d

HEALTHCARE

ENVIRONMENT/CROSS-

CUTTING ISSUES

E
ss

e
n

ti
a

l

R
e

co
m

m
e

n
d

e
d

PROCUREMENT

AND OPERATION

E
ss

e
n

ti
a

l

R
e

co
m

m
e

n
d

e
d

Adult inpatient

services
x

 Administration

and related

services

x
 Generic room

requirements
x

 Integrated

infrastructure

planning

x

Clinical and

specialised diagnostic

laboratory guidelines

x
 General hospital

support services
x

 Hospital design principles
x

 Briefing manual
x

x

Mental health
x

 Catering services

for hospitals
x

 Building engineering

services

x Space guidelines x

Adult critical care
x

 Laundry and

linen

department

x
 Environment and

sustainability

x Cost guidelines x

Emergency centres
x

 Hospital

mortuary

services

x
 Materials and finishes

x
Procurement

x

Maternity care

facilities
x

 Nursing

education

institutions

x
 Future healthcare

environments

x

Commissioning

health facilities

x

Adult oncology

facilities
x

 Health facility

residential
x

 Healthcare technology
x

Maintenance
x

Outpatient facilities
x

 Central sterile

service

department

x
 Inclusive environments

x
Decommissioning

x

Paediatrics and

neonatal facilities
x

 Training and

resource centre

 x Infection prevention and

control

x

Capacity

development

x

Pharmacy
x

 Waste disposal x Information technology

and infrastructure
x

Primary healthcare

facilities

 Regulations
x

Diagnostic radiology
x

Adult physical

rehabilitation
x

Adult post-acute

services
x

Facilities for surgical

procedures
x

TB services x

Colours legend

Consultants

Administrators

Related documents

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

1

PART A – SOFTWARE DESIGN PHILOSOPHY

Introduction

FAST is a novel briefing tool to facilitate the creation of health building

briefs. The prototype was demonstrated to various groups, such as the

IUSS Cost Norms Working Group and at the 2013 SAFHE Conference in

Cape Town. On the basis of subsequent comments and discussions, the

fundamental software capabilities were determined and are

incorporated in FAST v2.0. The essential purpose of this software tool is

to effectively and efficiently assist in the translation of the strategic

requirements for a particular new health facility into a detailed spatial

design brief for use by the professional team such as the architects,

Quantity Surveyors and NDoH.

The software application is relational database-based and uses a

convenient and efficient ‘drag-and-drop’ interface illustrated in Figure 2. The system uses a novel concept

of design objects (light blue coloured blocks) and actions (square blocks with icons) implemented by

means of a drag-and-drop interface. At the moment, six types of actions are supported and when

combined with the various objects, more than 25 tasks can be achieved. When an object (indicated by

light blue on the interface) is dragged and dropped on top of another object or alternatively on top of an

action button, the system automatically knows what the user is trying to achieve from the context and

order of the action.

This software architecture significantly reduces the number of command buttons required on the screen

and also simplifies the complexity of the briefing process that requires the user to consider many different

design options.

Figure 2: A typical example of the FAST drag-and-drop interface

FAST is a case- and rule-based

drag-and-drop software tool that

enables the professional health

facility design team to quickly

assemble a list of accommodation

by using predefined assemblies

and compare it against a norm or

against other comparable

precedent facilities.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

2

The case-based reasoning (CBR) aspect of FAST

CBR is one of the two fundamental approaches that have been used in the design of FAST. CBR has several

advantages that make it an appropriate method to use in FAST. The list below has been collated and

adapted from Kolodner (1993). In terms of an IUSS project, a case could range from a single room such as

a bed unit, an assembly of rooms such as a medical ward, or it could be an entire health facility. The

following advantages specifically related to the architectural briefing and design process as implemented

in FAST can be identified:

1. CBR allows the designer to propose solutions to design problems quickly, because it avoids the time

necessary to derive those answers from scratch.

2. CBR allows a designer to propose solutions in domains that are not completely understood. This is of

particular importance to the advanced planning that is necessary to design and build complex

facilities such as hospitals. Although extensive IUSS Health Facility guides have been developed, not

everything in the design of a complex health facility can be expressed in terms of mathematical rules.

3. Remembering previous designs is particularly useful in warning of the potential for problems that

have occurred in the past, alerting a designer to take action to avoid previous mistakes.

4. CBR can be used as a communication tool between designers and other less design-literate

participants to clearly communicate the design intentions.

5. Cases help a designer to focus his design activity on important parts of a problem by pointing out

what features of a problem are the important ones.

6. When CBR is used to solve problems, solutions can be justified by the cases they are derived from. In

a domain where it is difficult to evaluate solutions objectively, such as architectural design, CBR has

the advantage of providing illustrations of the effects of particular solutions.

7. CBR can be designed to anticipate potential problems as natural part of the reasoning process.

Unsuccessful experiences with past solutions can be used in case-based systems to anticipate

possible problems that might result from solving a design problem a certain way. In general, this

capability adds efficiency. In architectural design anticipation of problems is critical.

8. CBR provides a way for designers and computers to interact in a realistic way. CBR is fundamentally

inspired by human behaviour. Certain tasks in design, such as the calculation of energy consumption

or acoustic performance, are easier for a computer to achieve, whereas aesthetic design decisions are

best decided by the designer. Designers are good with creative reasoning, but poor at remembering

the full range of applicable cases. Humans tend to be biased in their memory or as novices they have

not yet had the experiences they need to solve the problem. During an interview of the professional

team involved in a large and complex construction project, this fact was emphasised.

9. The knowledge acquisition for a CBR system is natural. Concrete examples rather than piecemeal

rules can be used. Experts, such as experienced health practitioners, find it difficult to report the

knowledge they use to solve problems. They are quite at home reporting their experiences and

discussing the ways in which cases are different from one another.

10. CBR should be considered when it is difficult to formulate domain rules, but where cases are

available. Formulating specific rules is difficult in weak theory domains such as architectural briefing

and design. In this domain knowledge is very difficult to obtain, incomplete, uncertain or sometimes

inconsistent. It is impossible to formulate rules when there is a great amount of variability in design

situations that should have the same outcome.

11. CBR can be considered when rules that can be formulated require more input information than what

is normally available. This may be due to incomplete specified problems, or the fact that the

knowledge required is not available at design (problem-solving) time. This is often the case in the

construction industry and fast-track projects where all project information is not available upfront.

12. CBR should be considered when it is too complex (expensive in computational terms) to use rules

because the average rule chain is too long.

13. CBR should be used when generally applicable knowledge is not sufficient to solve a problem. This

could be due to the fact that knowledge changes with context, or because some of the knowledge

required to solve the problem is used only under special circumstances.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

3

14. CBR should be considered when a case library already exists. In the IUSS project a number of health

facilities have already been analysed and is available in structured format.

15. When no fast computation method exists for deriving a solution from scratch, CBR allows new

solutions to be derived from precedent ones. Health facilities can be quickly configured by using

different exemplar department and architectural assemblies.

16. When there is no fast computational method for evaluating a solution, or when there are so many

unknowns that evaluation methods are unusable or difficult to use, CBR provides an alternative.

17. CBR allows evaluation of solutions when no direct algorithmic method is available for evaluation.

18. Cases are useful in interpreting open-ended and ill-defined concepts.

The disadvantages and caveats of case-based reasoning

CBR has several disadvantages and caveats in architectural design that should also be considered. The list

below has been collated and adapted from Kolodner (1993):

1. CBR requires cases or spatial assemblies in the context of this document. Traditionally the effort in

building a CBR system went into case collection. It is apparent from a study and interviews
1
 with the

designers of other CBR systems that it can be an enormous effort. To be successful in the

architectural profession and the construction industry it should not require such extraordinary

efforts. The case library should be automatically assembled during the normal professional design

activities.

2. For CBR to be useful and reliable, cases with similar problem statements should have similar

solutions. CBR is based on the premise that situations recur in a predictable way. Adaptation modifies

old solutions to fit new requirements. If a domain is discontinuous where similar situations require

wildly different kinds of solutions, then CBR cannot be used and would be misleading. This is

unfortunately only partially true in architecture, because creative designers do not always solve

related design problems in a similar way.

3. CBR solutions are not guaranteed to be optimal and in health briefing and design it unlikely that this

ambitious goal would ever be achieved. The full range of possible design solutions is usually not

explored in a CBR-system intended for design support. Optimal or more creative solutions may be

missed due to time constraints or incomplete knowledge of the design team. This is generally a

problem in any heuristic system. The designer cannot escape his responsibilities; however, the CBR

system will remind him of design aspects he might have forgotten and make sure that essential

spaces are not forgotten.

4. An inexperienced case-based user might be tempted to use old cases blindly, relying on previous

experience without validating it properly in the new situation.

5. A case-based user might allow cases to bias him or her too much in solving a new problem.

6. Case libraries require considerable storage space. In the design of CBR-systems, special consideration

must be given to ensure a long life of the case with changing technology. A large sum of money in

terms of intellectual capital, time and effort is encapsulated in the case library. Persistence of data is

therefore of paramount importance.

7. Inexperienced people are often not reminded of the most appropriate sets of cases when they are

reasoning.

The rule-based reasoning (RBR) aspect of FAST

A RBR system has also been implemented in FAST alongside the CBR system to calculate derived spatial

sizes, where the actual size of the space can only be known in the context of the final design. The RBR-

system has been implemented by means of an interpretive spatial programming language called ESPACE.

A simple example of a rule is the contextual calculation of the amount of secondary circulation space in a

ward when a FAST user is creating a new design. By means of the introduction of ESPACE into FAST, the

1
 Janet Kolodner and Craig Zimring personal communication during April 2000 at the Georgia Institute of Technology, Atlanta,

Georgia, USA.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

4

software developers created special event-driven formulas that automatically execute (trigger) when a

FAST user drags-and-drops derived space types into the DESIGN ASSEMBLY area.

Spaces listed in the ROOM DETAIL LIBRARY can be only one of two types. It must either have a fixed pre-

allocated size in m², or it must have an ESPACE rule attached to it. If neither of the two applies, it means it

will be entirely the user’s responsibility to determine an acceptable m² size within the specific context.

Detailed documentation of how this all works is included below.

CBR compared to other methods

The CBR/CBD cycle (Kolodner 1993:18) has striking similarities with the product development method of

concept selection proposed by (Pugh, 1996; Ulrich et al., 1995) (Error! Reference source not found.3). In

generalised terms, the CBD-cycle is the case equivalent of concept selection.

The typical stages of the CBD-cycle are (Kolodner et al. 1996:35):

1. Case retrieval (assembly). Partially matching cases must be retrieved to facilitate reasoning. This is

called case retrieval. The case was created in the first instance by a case storage process also called

memory update.

2. Solution proposal. In problem-solving CBR, an approximate solution to the new problem is proposed

by extracting the solution from the retrieved case.

3. Adaptation. This is the process of altering an old solution to fit it to the context of the new situation.

4. Criticism. This is a critical analysis of the new solution before applying it.

5. Justification. This is the process of creating an argument for the proposed solution, done by a process

of comparing and contrasting the new situation with prior cases. Sometimes justification might be

followed by a criticism step in which hypothetical situations are generated and the proposed solution

applied to them in order to test the solution.

6. Store assembly (memory update). The new case is permanently saved for future use.

.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

5

Figure 3: Case-based reasoning compared to concept selection (collated by author from Kolodner

(1993:18), Ulrich et al. (1995) and Pugh (1996))

The process as illustrated in Figure 3 is conceptually typical of how a FAST user would use the system.

Table 3 compares the characteristics of case-based reasoning, (CBR), rule-based reasoning (RBR) and

model-based reasoning (MBR)
1
.

These differences lead to differences in knowledge acquisition. In RBR, knowledge is extracted from

expert opinion and encoded in rules. This is often difficult to achieve. In CBR most (but not all) knowledge

is in the form of cases. CBR needs adaptation rules and similarity metrics and more types of knowledge,

but knowledge is easier to acquire.

In the past both MBR and CBR were developed as methods for avoiding reasoning from scratch. Both

compose knowledge into large chunks and reason using large chunks. The differences mostly have to do

with the content of the knowledge used and the conditions of applicability for each.

Table 4: A comparison between case-based, rule-based and model-based reasoning (collated by author)

Case-based reasoning Rule-based reasoning Model-based reasoning

Cases in case libraries are constants

that describe the way things work.

Rules in rule bases are patterns.

Store causal models of devices or

domains.

Cases are retrieved that match the

input partially.

Rules are retrieved that match the

input exactly.

Cases are retrieved first,

approximating the entire solution

at once, then adapted and refined

to a final answer.

Rules are applied in an iterative

cycle of micro events.

1
 Janet Kolodner is of the opinion that CBR, MBR and RBR form a continuum. Personal communication 14 April 2000.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

6

Case-based reasoning Rule-based reasoning Model-based reasoning

Cases are large chunks of domain

knowledge, quite likely redundant,

in part, with other cases. Based on

idiosyncratic knowledge, specific to

episodes but mostly not normative.

Provides methods for constructing

solutions.

Rules are small, ideally

independent but consistent pieces

of domain knowledge.

Emphasise general knowledge that

covers a domain. Models hold

knowledge needed for validation or

evaluation of solutions but do not

provide methods for constructing

solutions.

CBR can be used both when a

domain is well and not so well

understood. In the latter case it

assumes the role of a generalised

model.

Not applicable Is used when a domain is well

enough understood to enumerate a

causal model.

Provides for efficient solution

generation and evaluation is based

on the best cases available.

Not applicable Provides a means of verifying

solutions, but solution generation is

unguided.

Needs a means of evaluating its

solutions, guiding its adaptation

and knowing when two cases are

similar.

Not applicable Models provide a means of

evaluating its solutions.

Design and planning principles

Specific hospital design principles are dealt with extensively in a separate IUSS document and must be

read in conjunction with this document when creating a new design brief with FAST.

General design and planning principles

There are a number of planning principals that need to be emphasized and some of them need to be

directly considered when creating a brief. Please refer to the other related documents listed in the IUSS:

General hospital support (GNS) reference documents. The Hospital design Principles, especially the

Clinical Services, Support Services and Health care Environment as summarized in Table 3 above should be

referred to.

The planning of the required space includes the following requirements:

1) Personnel – How many people are there at any given time in a specific place to perform a specific task

or procedure?

2) Activities– What procedures are to be performed?

3) Equipment – What equipment is required that will occupy the space?

4) Security – Access control to be determined by the hospital management

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

7

PART B – USE OF THE FAST SOFTWARE

When the word ‘design’ is used in the context of this document it refers to the selection of spaces with

the purpose of creating a schedule of spaces to support the briefing process and not design in the

traditional holistic sense of architecture. The output from FAST is in the form of reports and spreadsheets

that provide input into other software and processes for analysis purposes and are used to essentially

determine if the design is within spatial, functional and cost norms.

Login

The main FAST screen is shown below (Figure 4). It provides access to all other features of the program,

such as the definition of the briefing project, the creation of design targets and the creation of the design.

Figure 4: FAST main form. Provides access to all other features

Define facility

This form is used to enter and edit the main characteristics of the facility to be designed and can be

described as the birth certificate of the design. Most of the fields are self-explanatory; however, the

‘Designated Level of Facility’ field needs special mention.

This field is accessible through the 'FACILITY_LEVEL' system variable in the ESPACE rule programming

language. It is especially useful to distinguish or have different rules for different types of hospital. The

'FACILITY_LEVEL' system variable returns the following values (Table 4):

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

8

Table 5: Implementation of Facility Level in FAST

Implementation of Health Facility Level in FAST
Type of health facility Level number accessible through 'FACILITY_LEVEL' system variable

Clinic 1

Community Health Centre 2

District Hospital (Level 1) 3

Outreach Mobile 4

Regional Hospital (Level 2) 5

Special Maternity 6

Special Psychiatric 7

Special Tropical 8

Tertiary Hospital (T1) Developing 9

Tertiary Hospital (T2) Fully Developed 10

Tertiary Hospital (T3) National Referral Hospital 11

Tertiary Hospital (T4) Central Referral Hospital 12

Figure 5: Current Health Facility form that is used to define the main characteristics of the design

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

9

Space assembly dashboard (create design menu item)

This is the main form where accommodation schedules are designed. The following methods can be used

to create a design:

• It can be created room by room from the ROOM DETAIL LIBRARY. (Least efficient)

• A design can be imported from an external source such as a CAD system through the FAST

comma delimited exchange format documented elsewhere in this document in Appendix B. (Very

efficient)

• It can be assembled from predefined assemblies from the ASSEMBLY LIBRARY. (Very efficient)

Assembly design from ROOM DETAIL LIBRARY

This is the most fundamental and slowest (from a productivity point of view) design action that FAST

supports. This can be used to achieve the following tasks:

• A new design assembly can be created from a set of rooms.

• An existing design can be modified by adding or deleting rooms.

Figure 6: Create a design from ROOM DETAIL LIBRARY (Drag from 1 and Drop at 2 or 3)

Figure 6 illustrates the various possible actions. If a space has a light blue square block indicator in the

ROOM DETAIL LIBRARY between the Space Use and Area (m²) fields, then it means that there is an

illustrative layout drawing attached to the item. You can view this drawing by dragging the Code field

indicated with a 1 (in this case Code AAAD) from the ROOM DETAIL LIBRARY and drop it on the display

drawing action indicated with a 2. This will launch the FAST viewer that will give you an indication of the

design of a particular layout such as the m² area, dimensions and internal layout. (Figure 7)

Once the designer is satisfied with the selection of a particular room type, it can be dragged and dropped

into the DESIGN ASSEMBLY area by dropping the room either on the Class field or the Assembly Code

field.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

10

You will notice that the Dept. and Assembly Code fields contain a ‘-‘ at this stage. This indicates that the

particular space has not yet been allocated to a health facility department, i.e. it is effectively ‘homeless’.

At this stage you can allocate a department or wait until you have all the rooms for a particular

department and then allocate them all. The Assembly Code is at this stage unallocated, because spaces

were dropped in one-by-one from the ROOM DETAIL LIBRARY. A code will be allocated when a particular

set of rooms such as a complete ward design is transferred to the ASSEMBLY LIBRARY and then becomes

a named assembly that can be used in future designs. If a named assembly is brought into the DESIGN

ASSEMBLY AREA, then the Assembly Code and version number are displayed in this field.

If you dragged-and-dropped the wrong space type into the DESIGN ASSEMBLY, you can easily delete it by

executing the action illustrated in Figure 12. Be sure to drag-and-drop from the Class field and not the

Assembly Code field, unless you want to delete an entire assembly.

Figure 7: FAST drawing display of room AAAD, a four-bed unit, excluding en suite that is 42.21 m²

Assemble design from ASSEMBLY LIBRARY

This is the most efficient (from a productivity point of view) design action that FAST supports. This can be

used to achieve the following tasks:

• Large and complex design assemblies can be quickly created from assemblies that, for example,

contain an entire ward.

• An existing design can be modified by adding or deleting single rooms or entire assemblies due to

the introduction of version numbers in the Assembly Code field.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

11

Figure 8: Create a design from the ASSEMBLY LIBRARY (Drag from 1 and Drop at any position 2)

Figure 8 illustrates the various possible actions. Select an existing design assembly from the ASSEMBLY

LIBRARY if there is a suitable one. If an assembly has a light blue square block indicator in the ASSEMBLY

LIBRARY between the Assembly Name and Assembly Description, then it means that there is an

illustrative layout drawing attached to the item. You can view this drawing by dragging the Assembly

Code field indicated with a 1 (in this case Code MED_W_D) from the ASSEMBLY LIBRARY and drop it on

the display drawing action illustrated above in Figure 8. This will launch the FAST viewer that will give you

an indication of the design of a particular layout.

Once the designer is satisfied with the characteristics of a particular assembly type, it can be dragged and

dropped into the DESIGN ASSEMBLY area by dropping the assembly room either on the Class field, or the

Assembly Code field.

You will notice that the Dept. field will contain the department that was originally allocated when the

assembly was built. The Assembly Code fields will contain a ‘MED_W_D/1‘at this stage. This indicates that

after insertion of assembly code ‘MED_W_D’, version number ‘1’ was allocated to it. This is a particularly

useful feature. If you insert another instance of the same assembly version, number ‘2’ will be allocated to

all the spaces that belong to that instance. The fact that new version numbers are allocated makes it very

easy to delete an entire assembly from the DESIGN ASSEMBLY avoiding the tedium of deleting each room

separately.

If you dragged-and-dropped the wrong assembly into the DESIGN ASSEMBLY you can easily delete it by

executing the action illustrated in Figure 9. Be sure to drag-and-drop from the Assembly Code field if you

want to delete an entire instance of an assembly. As before, if you want to delete or add individual spaces

to the assemblies contained in the DESIGN ASSEMBLY, you can easily delete it by executing the action

illustrated in Figure 9. Be sure to drag and drop from the Class field to remove single spaces.

Use of DESIGN COMPARATOR

The FAST DESIGN COMPARATOR is used to compare different designs with regard to sizes, types and

number of spaces. This is useful to compare precedent designs against a new DESIGN ASSEMBLY.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

12

Figure 9: The FAST DESIGN COMPARATOR allows convenient comparison between two designs

To open the DESIGN COMPARATOR Drag from object at 1 and Drop on action at position 2. If there was

already a design in the comparator it will open the DESIGN COMPARATOR panel and display the data. If

you want to display a different design, Drag from action at 3 and Drop on object at position 4. To retrieve

any design from the design repository follow the method illustrated in Figure 9. A list of designs that is

currently available in the design repository will appear in a block with a red border. Drag from object at 5

and Drop on object at position 6. The design selected will now appear in the DESIGN COMPARATOR.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

13

Figure 10: Select a design from the design repository for insertion into the DESIGN COMPARATOR

Create template design target

It is a rather difficult and tedious process to create design targets for health facilities, because a designer

cannot simultaneously think of all aspects that need to be considered in this complex environment. In

recognition of this a special action has been introduced to quickly and accurately build a template target.

Once this has been done the user can modify it to suit the specific requirements of a design.

The first step is to create a design assembly that most closely matches what the design team thinks is the

best solution for a particular size health facility. It could be based on a known existing hospital, if you have

the detail available, or you can build it from assemblies in the ASSEMBLY LIBRARY, or you could even go to

the effort of starting completely from scratch.

Once you are satisfied with the design in the DESIGN ASSEMBLY you can Drag from position 1 and Drop at

position 2. Behind the scenes a rather complex series of calculations takes place to create a template

target. The number of functional planning units per department, as well as an area range is calculated.

FAST calculates the actual m² per planning unit, per department and then adds 5% above and below this

figure to create a 10% target range. Once this has been done the user can inspect the results and make

finer adjustments where necessary to complete the target.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

14

Figure 11: Create a new functional unit design target from a design assembly. (Drag from 1 and Drop at

position 2)

Delete actions

Due to the large number of rooms that define a large health facility a hierarchy of delete actions has been

introduced in FAST to make the system as efficient as possible. On the space assembly dashboard, six

possible delete actions exist:

• Delete a specific room (Figure 12)

• Delete specific design assembly (Figure 13)

• Delete entire design assembly (Figure 14)

• Delete (hide) design comparator (Figure 15)

• Delete assembly library item (Figure 16)

• Delete the entire project from the design repository (Figure 17 and 18).

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

15

Figure 12: Delete a specific room from the DESIGN ASSEMBLY (Step 1 and 2) (Drag from 1 and Drop at

2)

Figure 13: Delete specific design assembly (Step 1 and 2) (Drag from 1 and Drop at 2)

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

16

Figure 14: Delete entire design assembly (Step 1 and 2) (Drag from 1 and Drop at 2)

Figure 15: Delete design comparator (Step 1 and 2) (Drag from 1 and Drop at 2)

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

17

Figure 16: Delete assembly library item (Step 1 and 2) (Drag from 1 and Drop at 2)

Figure 17: Delete entire project permanently from the design repository (Step 1 and 2) (Drag from 1 and

Drop at 2)

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

18

Figure 18: Delete entire project from design repository (Step 3 and 4) (Drag from 3 and Drop at 4)

Space target dashboard (define design targets menu item)

This is the main form where design targets are created. The following methods can be used to create a

target:

• It can be created department by department from the FUNCTIONAL UNIT LIST. (Least efficient)

• A predefined target can be selected from the FUNCTIONAL UNIT DESIGN TARGET LIBRARY, if a

suitable target already exists. (Very efficient)

• A target template can be created from a good precedent design that is currently loaded in the

DESIGN ASSEMBLY. This was illustrated in Figure 11 above. (Very efficient)

The latter method discussed above is a good example of a case-based reasoning approach to complex

problems. The theory of CBR, as well as the advantages and disadvantages of CBR, has been discussed

above. Figure 19 illustrates phase 1 of the creation of a design target for a medical ward. To achieve this,

select the functional unit (department) that you want to work with. Drag from object 1 and Drop at 2.

You will notice that only one line is inserted, because the FUNCTIONAL UNIT DESIGN TARGET panel is by

default in Only Planning Unit mode. You can expand the list into individual functional units by clicking on

the radio button. The heading will turn blue and confirm that you are now in Planning and Functional Unit

mode. Instead of 11 only one item will now be displayed (Figure 19).

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

19

Figure 19: Create design target from FUNCTIONAL UNIT LIST phase 1 (Drag from 1 and Drop at 2)

Figure 20 illustrates how an expanded list for the medical departments looks. One department expanded

into 11 sub-items called functional units. Each functional unit represents a different planning unit. Each

department should have at least four functional units, i.e. workspace, workspace support, core, and

structure. However, in many cases there will be more depending on the complexity of the department.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

20

Figure 20: Create design target from FUNCTIONAL UNIT LIST phase 2

You can now proceed to fill in the No. of FPUs, Min. Area (m²) and the Max Area (m²) fields. This is a time-

consuming process and requires a very high level of skill to accomplish. It is assumed that an indication of

the number of planning and functional units would be available from the output of the infrastructure

optimisation planning toolkit (IOPT).

Once specific targets have been set, you may save the target for future use. Two possibilities are

supported. You can Drag from 2 (FUNCTIONAL UNIT DESIGN TARGET) and Drop at 3, or you can Drag

from 2 (FUNCTIONAL UNIT DESIGN TARGET Class object) and Drop at 3. The former will transfer or save

the complete contents of the FUNCTIONAL UNIT DESIGN TARGET into the FUNCTIONAL UNIT DESIGN

TARGET LIBRARY and the latter will only transfer the specific department where you start the Drag from.

This provides the designer with a lot of flexibility.

Note that a default name is allocated to the design target when it arrives in the FUNCTIONAL UNIT

DESIGN TARGET LIBRARY. The Assembly Code = ‘-‘, the Assembly Name = ‘New Functional Unit Target

Assembly’ and the Assembly Description is ‘This is a new Functional Unit Target assembly.’ These general

default descriptions need to be renamed to something that precisely describes the intent and

characteristics of the particular design target.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

21

THE ESPACE PARAMETRIC RULE DEFINITION AND AD HOC SPATIAL

ANALYSIS LANGUAGE

Introduction

This section is a specialized section about the ESPACE language. It would normally only be used by

advanced or interested users. It is included here to provide full documentation of all the capabilities of

FAST.

The ESPACE rule and ad hoc query definition language is a simple (not as extensive as Java, C or Visual

Basic .NET) and flexible interpretive
1
 language that is used as part of the FAST system to analyse spatial

usage directly and to formulate rules to derive the area of spaces that vary their size, depending on a

specific context. It can be used to compare a particular facility against any number of norms, or even

other facilities.

For the development of ESPACE applets a special interactive code developer is provided that can be used

to create ad hoc requests and/or to develop code that will be used in the norms formulation. (Figure 21)

In terms of ESPACE a rule or ad hoc query applet is an autonomous, limited size code fragment that can be

used to formulate ad hoc spatial queries or it can be used in the norms rule formulation itself.

1
 The ESPACE rule is executed line-by-line when the Execute button is pressed in the Interactive Query

Builder/Debugger or when a derived space is dragged-and-dropped into the DESIGN ASSEMBLY area of FAST.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

22

Figure 21: FAST interactive rule and ad hoc query builder

Although applets can theoretically be developed for any facility hierarchical level such as facility, building,

floor or space, the interactive Query Builder/Debugger supports testing of applets only at facility level. At

the moment FAST only supports design analysis at facility level, because the DESIGN ASSEMBLY system

does not support other levels such as building, floor or space. As the need arises in future, the

development team might consider the further expansion and support of hierarchical facility levels to

support more advanced analysis.

The ESPACE interactive language

The ESPACE language is described in detail below. It contains powerful high level functions that would

normally have required very complex database structured query language (SQL) queries to achieve the

same result. It also contains logical control structures normally found in any language such as an If Then

Else End control structures. Variables are created with the DECLARE function and results are returned with

the RETURN function.

When an applet is developed in the Interactive Query Builder, results are displayed in a pop-up window.

(Figure 22) When the same code is placed in the Area Calculation Rule textbox of the Functional Space

Classification form, the code is executed whenever the user drag-and-drop the particular space type into

the DESIGN ASSEMBLY area. The result appears in the area field and is highlighted in yellow (Figure 23) to

indicate that the derived answer in m² is the result of a calculation or rule.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

23

If no applets have been defined for a particular classification category or space type, then the Area m² will

not be filled in automatically. If no formula has been defined for a space type and no static area has been

allocated then nothing will be displayed.

Figure 22: Result of query in interactive environment

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

24

Figure 23: The yellow highlighted block indicates that the area in m² is the result of a resolved rule

How to develop an ESPACE applet

The discussion below describes how to develop an ESPACE applet. Although FAST is delivered with a fully

functional set of ESPACE applets, it might be necessary from time to time to modify the existing norms or

to create ad hoc queries for particular purposes. Please refer to Table 5 for a summary of all available

ESPACE functions.

Assume that an applet needs to be developed that will return the percentage of core area in a health

facility. Assume that the designer aims to achieve a % somewhere between 32.51% and 35.94%. The

current Khayelitsha Hospital has a core percentage of 34.23%. To activate the FAST Interactive Query

Builder/Debugger, select the FAST Rule Builder option on the Rule Definition tab of the FAST Main Form.

Create a new applet record by selecting the action button on the form. Choose an appropriate name

for the applet and enter it in the Program Name field. Enter an appropriate description for the applet such

as “This applet returns the percentage of core area. In this case we are aiming for something that should

be between 32.51% and 35.94%” to describe the exact purpose or function of the applet.

The next field can be left open at this stage because the applet must first be developed before a specific

department can be selected for testing and more specific analysis purposes.

The purpose of the applet is to return the percentage of core area. ESPACE has a high level function CORE

that will return all spaces that have a top level classification category of C. Seeing the percentage core in

relation to the workspace area, the applet calculates the actual workspace area. In the ESPACE functional

space classification, category A contains categories that are closely related to, but are not actually

workspace area. The solution to this is to use the high level WORK_SPACE function and to subtract the

spatial types that must not be included. The first step is therefore to declare temporary variables to

contain these values.

STEP 1: Declare applet variables

DECLARE a = 'WORK_SPACE'

DECLARE c = 'CORE'

DECLARE e = '~AB'

DECLARE f = '~AC'

DECLARE g = '~AD'

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

25

STEP 2: Calculate percentage core space

RETURN c/(a - (e+f+g)) * 100.0

The RETURN statement will display the result of the calculation. This is useful in the interactive debugging

and testing environment. However, when the applet is placed in the norms definition environment, this

program statement can be disabled by placing a // in front of the statement. The statement will then look

like this:

// RETURN c/(a - (e+f+g)) * 100.0

Core is calculated by dividing the amount of core area (contained in variable c) by the amount of

workspace area (contained in variable a). The amount of workspace area is adjusted by subtracting all

shared/communal (~AB), public interface (~AC) and technical/special (~AD) areas. Note the use of the ‘~’.

This indicates that all spatial type categories lower down in the hierarchy, including the actual

classification category, must be included. This is a convenient shorthand method in the case of ~AB to

include AB, ABA, ABB, ABC, ABD, ABE, ABF and ABG. If you want just one particular category and nothing

else, use the _AB notation.

STEP 3: Calculate result to be returned

IF c/(a - (e+f+g)) * 100.0 > 35.94 THEN

 RETURN '> 35.94%'

ELSE

 RETURN '< 35.94%'

END

The applet is now complete and can be tested. Before the applet is tested make sure that the DESIGN

ASSEMBLY area of the Create Design (Space ASSEMBLY DASHBOARD) contains some realistic data, facility,

assembly or set of desired spaces. Select the Parse button to check the code and run the applet. If there

was a logical error in the code, then this will be reported in the Log field, for example:

SYNTAX ERROR. Line 14. Expecting: EOF - &) * / + < <= <> == > >= declare do else end if read return then

while

If no errors were found then the log will report

-- Applet Valid –

You can now proceed and analyse other facilities. This particular example can only be used in the

interactive environment, because it does not return an area. If you formulate a rule for use in DESIGN

ASSEMBLY area, the applet must be rule that returns an area. Furthermore, it must only return one result,

because the area field can only contain one answer.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

26

Table 6: Summary of ESPACE functions

Special ESPACE functions

ESPACE function Hierarchical

level
2

1 = facility

2 = building

3 = floor

4 = space

Examples Comments

FACILITY_LEVEL 1 DECLARE d = 'FACILITY_LEVEL' Returns the level of

the particular health

facility as defined in

the ‘Designated

Level of Facility’ field

of the Current Health

Facility form.

FLOORS

1, 2 DECLARE a = 'FLOORS'

RETURN a

At level 1 it returns

all floors in the

facility. At level 2 it

returns only the

floors within the

current building.

ALL_PERSONS

1 DECLARE a = 'ALL_PERSONS'

RETURN a

Returns the number

of persons in the

entire facility.

PERSONS

1, 2, 3 or 4 DECLARE a = ‘PERSONS’

RETURN a

Returns the total

number of persons

at the current

hierarchical level.

PERSONS(_A to _DE or ~A to

~DE)

1, 2, 3 or 4 DECLARE a = 'ALL_PERSONS'

DECLARE b = 'PERSONS(~AAA)'

DECLARE c = 'PERSONS(~AAB)'

DECLARE d = 'PERSONS(~AAD)'

DECLARE e = 'PERSONS(~AAD)'

RETURN a

RETURN b

RETURN c

RETURN d

RETURN e

Returns the number

of persons in a

specific classification

category or

classification

hierarchy.

WORK_SPACE

1 // Total amount of workspace area per

person

DECLARE a = 'ALL_PERSONS'

DECLARE b = 'WORK_SPACE'

DECLARE c = 'WORK_SPACE_SUPPORT'

DECLARE d = 'CORE'

DECLARE e = 'STRUCTURE'

DECLARE f = b+c+d+e

RETURN 'Category Workspace (A) = '

RETURN b

Returns all the

workspace (category

A) space in the entire

facility.

2
 In the FAST software environment only one hierarchical level is supported, because the concept of

building, floor and space does not exist. The only level supported is Facility Level.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

27

RETURN 'Category Workspace Support (B) =

'

RETURN c

RETURN 'Category Core (C) = '

RETURN d

RETURN 'Category Structure (D) = '

RETURN e

RETURN 'Number of Persons = '

RETURN a

RETURN 'Total Floor Area = '

RETURN f

RETURN 'Space per Person = '

RETURN f/a

WORK_SPACE_SUPPORT

1 See above Returns all the

workspace support

(category B) space in

the entire facility.

CORE 1

See above

Returns all the core

(category C) space in

the entire facility.

STRUCTURE 1 See above Returns the

structural area

(category D) for the

entire facility. It

includes both

external and internal

walls.

BEDS

1 DECLARE a = ‘BEDS’

RETURN ‘Total number of beds = ‘ & & a

Returns the total

number of beds in

the facility. The

PeopleCodes field

value of ‘M001’ in

the

<Space_ASSEMBLY>

table is used to

recognise beds.

FACILITY_LEVEL 1 // Calculate CAAG

DECLARE a = '@?'

DECLARE b =

'AREA_DEPARTMENT_SPACETYPE(?,CAAG)'

DECLARE c =

'AREA_DEPARTMENT_SPACETYPE(?,D)'

DECLARE d = 'FACILITY_LEVEL'

IF (d >= 3) THEN

 RETURN (a-b-c)*0.28829690

ELSE

 RETURN (a-b-c)*0.28829690

END

Returns the level of

the facility as a

whole number

(integer) selected on

the Define Facility

form. The values

returned are

described in detail in

Table 6. The function

reads the

TypeOfHealthFacility

field of the

<CurrentFacility>

database table.

See above Returns the sum of

the area for only the

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

28

_A to _DE 1, 2, 3 or 4 specific

classification. The

classification must

be prefixed with a ‘_’

to indicate to the

ESPACE interpreter

that a space category

rather than a

variable is intended.

~A to ~DE 1, 2, 3 or 4 See above Returns the sum of

the area for the

hierarchical family of

space classifications

where the particular

classification is at the

top of the hierarchy.

The required

classification family

must be prefixed

with a ‘~’ to indicate

to the ESPACE

interpreter that a

space category

rather than a

variable is intended.

@A to @J 1 DECLARE a = '@BAD'

DECLARE b = '@?'

RETURN 'Area for only department BAD = '

& a

RETURN 'Area for any department with late

binding = ' & b

Returns the sum of

the area for only the

specific department

classification. The

classification must

be prefixed with a

‘@’ to indicate to the

ESPACE interpreter

that a department

category rather than

a variable is

intended.

#A to #J 1 DECLARE a = '#BAD'

DECLARE b = '#?'

RETURN 'Area for hierarchy under BAD = ' &

a

RETURN 'Area for hierarchy under BAD with

late binding = ' & b

Returns the sum of

the area for the

hierarchical family of

department

classifications where

the particular

classification is at the

top of the hierarchy.

The required

classification family

must be prefixed

with a ‘#’ to indicate

to the ESPACE

interpreter that a

space category

rather than a

variable is intended.

? 1 This is the late

binding symbol used

for depart-

ment/functional unit

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

29

specifically. This

means that the

relevant department

is only provided at

runtime when the

particular

department is

known within the

specific context. This

is very economical,

because only one

applet can be

developed and used

universally.

General ESPACE functions

Comment Start = '/*'

Comment End = '*/'

Comment Line = '//'

n/a // Development and debug code Provides a means to

comment parts of

the applet.

DECLARE n/a DECLARE a = 12

DECLARE b = 'ALL_PERSONS'

DECLARE c = 'PERSONS(~AAC)'

DECLARE d = '_AAC'

Creates new

variables. The first

character must be

alphabetic. Different

declarations are

possible depending

on the desired

result. The variables

are case-insensitive

and the length is

virtually unlimited.

Practical

considerations will

however limit it to

no more than 10

alphanumeric

characters.

RETURN n/a IF f/a > 12 THEN

 RETURN '>'

ELSE

 RETURN '<'

END

Returns the result of

an evaluation. If the

first character

returned is a ‘<’ or

‘>’ then the answer

will be coloured

green or red.

If Then End

If Then Else End

n/a IF f/a > 12 THEN

 RETURN '>'

ELSE

 RETURN '<'

END

Provides logical

control in the applet.

While Do End n/a DECLARE a = 12

WHILE (a > 1) DO

 DECLARE a = a -1

 RETURN a

END

Provides an

alternative to the If

Then End or If Then

Else End structure.

Note the use of the

RETURN to

decrement the value

being tested for.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

30

+, -, *, / n/a IF (a/12)+(3.14*2) > 24 then

 RETURN ‘>’

ELSE

 RETURN ‘<’

END

Plus, minus, multiply

and divide can be

used in any

expression with or

without nesting

brackets.

&

n/a RETURN ((a/b) * 100) & ' %' This is useful to

concatenate strings

or to append special

symbols to an

answer. Enclose the

numerical part

between braces;

otherwise

unexpected results

may be produced.

<, <=, >=, ==, <>

n/a If (a >= 12) THEN

 RETURN ‘larger or equal 12’

END

These operators are

available for

comparisons.

Example of an ESPACE applet

To develop a new ESPACE applet or edit an existing one, go to the ESPACE Interactive Query

Builder/Debugger. Access to this utility is found on the Rule Definition tab of the FAST Main Menu (Figure

4).

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

31

Figure 24: ESPACE applet to calculate department areas

Press the button to open the Interactive Query Builder. To create new applets select the button at

the bottom of the form. Fill in an appropriate name in the Program Name field. This name should describe

what the applet does, for example DEPARTMENT AREA. The description field offers the opportunity to

describe in a little bit more detail what the purpose of the applet is for example

This applet returns the total department area

The current contents (list of spaces) of the DESIGN ASSEMBLY are used during debugging to run the code.

(Figure 24) Before an applet can be fully tested, select a current department from the dropdown list in the

interactive debugger. To test an applet for valid syntax, press the button. If the test is

successful then the words -- Applet Valid – will be displayed in the Debugging Log field. If the user failed

to select a particular department beforehand, then the late binding symbol
3
 ‘?’ will be undefined. This

means that the applet is valid; however it cannot return any values, because it does not know for which

department you want to run the applet for.

An ESPACE rule or ad hoc query consists of three main sections and is created in the applet section (Figure

25):

3
 Late binding means a value is only known at a late stage, i.e. when the code executes. This makes the

applet very flexible, because it can be used in any context.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

32

1. Declare section

2. Calculation section

3. Return or result section

Figure 25: The applet section of the Interactive Query Builder

In the DECLARE section all the variables to accomplish the calculations are defined. In this case six

variables have been defined. Although there is virtually no limitation to the length of the variable names,

it should not be too long. For ease of use there is no difference in the declaration for numerical or text

variables. For this reason users should use variables in a sensible descriptive way. For example, one should

not try and add a string such as ‘Workspace’ to a numeric value such as 5 and expect a realistic result. If

you want to display a friendly description concatenated to a numeric answer use the & operator, for

example ‘Workspace Support = ‘ & b. It is good style to use braces around variables such as d/e. This

ensures that a calculation is bound together correctly, before attempting to concatenate the result to

some descriptive text.

In the example there is no formal calculation section, because the applet is relatively simple. For

debugging purposes some RETURN statements can be included to progressively check the correctness of

the applet. Once the applet is properly tested the debugging statements can be commented out with ‘/*’

and ‘*/’ or ‘//’ on each comment code line.

The final section is the RETURN section where the results of the applet are displayed. If the applet will be

used in the rule-based environment in the DESIGN ASSEMBLY area then only one result must be returned,

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

33

because the area field can obviously only contain on value at a time. If the applet will only be used in the

interactive environment for analysis or enquiry purposes, then multiple results can be returned to analyse

the spatial characteristics. In the example the final output of the results are displayed with six RETURN

statements.

ESPACE knows in which execution mode it is running, i.e. interactive mode (debugging or ad hoc query) or

rule interpretation mode in the DESIGN ASSEMBLY area. In the interactive applet development

environment, output is displayed in a small pop-up window. When a user drags and drops a space with a

rule attached to it into the FAST DESIGN ASSEMBLY area, the results are returned in the area field of the

DESIGN ASSEMBLY section of the Create Design form. It is highlighted in yellow to indicate that the result

is based on an ESPACE formula.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

34

APPENDIX A – FORMAL ESPACE LANGUAGE SPECIFICATION

Below is the formal Backus-Naur syntax specification or logical description of the ESPACE ad hoc query

and rule definition language used in FAST. The ESPACE language implementation for the IUSS project was

developed by means of the GOLD (Grammar Oriented Language Developer) Parser Builder version 5.2.0,

written by Devin Cook. (Cook, 1997)

"Name" = 'ESPACE'

"Author" = 'D.C.U. Conradie'

"Version" = '1.0'

"About" = 'ESPACE is designed to handle parametric space planning analysis and norms'

"Case Sensitive" = False

"Start Symbol" = <Statements>

{String Ch 1} = {Printable} - ['']

{String Ch 2} = {Printable} - ["]

{ID Tail} = {Alphanumeric} + [_]

Id = {Letter}{Alphanumeric}*

! String allows either single or double quotes

StringLiteral = '' {String Ch 1}* ''

 | '"' {String Ch 2}* '"'

NumberLiteral = {Digit}+('.'{Digit}+)?

Comment Start = '/*'

Comment End = '*/'

Comment Line = '//'

<Statements> ::= <Statement> <Statements>

 | <Statement>

<Statement> ::= return <Expression>

 | return <Expression> read ID

 | declare ID '=' <Expression>

 | while <Expression> do <Statements> end

 | if <Expression> then <Statements> end

 | if <Expression> then <Statements> else <Statements> end

<Expression> ::= <Expression> '>' <Add Exp>

 | <Expression> '<' <Add Exp>

 | <Expression> '<=' <Add Exp>

 | <Expression> '>=' <Add Exp>

 | <Expression> '==' <Add Exp>

 | <Expression> '<>' <Add Exp>

 | <Add Exp>

<Add Exp> ::= <Add Exp> '+' <Mult Exp>

 | <Add Exp> '-' <Mult Exp>

 | <Add Exp> '&' <Mult Exp>

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

35

 | <Mult Exp>

<Mult Exp> ::= <Mult Exp> '*' <Negate Exp>

 | <Mult Exp> '/' <Negate Exp>

 | <Negate Exp>

<Negate Exp> ::= '-' <Value>

 | <Value>

<Value> ::= ID

 | StringLiteral

 | NumberLiteral

 | '(' <Expression> ')'

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

36

APPENDIX B - INTERFACING TO OTHER SYSTEMS

FAST does not exist on its own and therefore needs a method to import information from other systems,

such as external CAD-systems, Quantity Surveyor software, CodeBook and spreadsheets. This appendix

describes the simple comma delimited flat file structure that facilitates this.

Figure 26 illustrates the required structured fields to export information into FAST from CAD-systems such

as AutoCAD, Revit and CADDIE. A record in this standard will contain either six or seven comma delimited

fields, depending on the type of record. Table 6 illustrates how the comma delimited file for a small clinic

looks that conforms to the structure illustrated in Figure 26.

Figure 26: The FAST comma delimited interface standard

Table 6 provides detail about the FAST comma delimited exchange standard fields. Please note that the

fields are separated with a ‘,’ and if there is no person type field, the last field ends with a ‘,’. The various

parts of the hierarchical structure for the hierarchical location are concatenated with the ‘:’ symbol.

Table 7: The FAST comma delimited exchange format

Field Description

Friendly Description Short description of the particular room.

Facility Code A facility code. One facility can contain many buildings, floors and

spaces.

Building Code A building code. The building code is separated from the facility code

with a ‘:’ separator. This is the second level in the facility hierarchy. A

facility might contain one or many buildings.

Floor Code A floor code. The floor code is separated from the building code with a

‘:’ separator. This is the third level of the facility hierarchy. One building

can contain one or many floors in a high-rise health facility.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

37

Field Description

Space Code A space code. The space code is separated from the floor code with a ‘:’

separator. This code is selected from the IUSS Functional Space

Classification, e.g. AAAD.

Area in m² This is the net area in m² of the facility. It should be to 3-decimal

accuracy to ensure adequate accuracy.

Department Code The department code must be selected from the IUSS Department

Classification.

Sub-Department Code The sub-department code gives an indication of how contiguous the

spaces in a department are. If all the spaces that make up a

department are together, then all the spaces would have a sub-

department code of A. However, if the department is fragmented in

three main areas, then area 1 would be indicated with a ‘A’, area 2 with

a ‘B’ and area 3 with a ‘C’.

Person Type and Number This field should only be used for clinical rooms that have a bed unit. It

should not be used for treatment and consulting rooms that might also

contain a bed. The code for a patient is ‘M001’. This is followed by the

‘/’ delimiter and the number of beds in a bed unit, for example 4.

Table 8: Example of a FAST comma delimited file that contains all the spaces for a small clinic

Garden Store,C1:B1:F0:R001,BGK,3.77,AA,A,

Dirty Utility,C1:B1:F0:R002,BMC,5.92,AA,A,

WC Staff,C1:B1:F0:R003,BEC,2.98,AA,A,

WC Staff,C1:B1:F0:R004,BEC,1.8,AA,A,

Kitchen Staff,C1:B1:F0:R005,BQ,9.95,AA,A,

Sub-Waiting Area,C1:B1:F0:R006,CAAK,26.74,AA,A,

Entrance Lobby,C1:B1:F0:R007,CAAM,11.73,AA,A,

Waiting Area,C1:B1:F0:R008,CAAK,31.36,AA,A,

Toilet Lobby,C1:B1:F0:R009,CAAM,5.62,AA,A,

Male Toilets,C1:B1:F0:R010,BEAA,2,AA,A,

Male Toilets,C1:B1:F0:R011,BEAA,9.02,AA,A,

Disabled Toilet,C1:B1:F0:R012,BE,4.22,AA,A,

Female Toilets,C1:B1:F0:R013,BEAB,2,AA,A,

Female Toilets,C1:B1:F0:R014,BEAB,2,AA,A,

Female Toilets,C1:B1:F0:R015,BEAB,7.34,AA,A,

Waiting Area External,C1:B1:F0:R016,CAAK,21.41,AA,A,

Reception,C1:B1:F0:R017,BAA,4.44,AA,A,

Play Area,C1:B1:F0:R018,ALG,7.13,AA,A,

Walk-In C.B.D,C1:B1:F0:R019,BGB,5.17,AA,A,

Room Treatment,C1:B1:F0:R020,AJA,15.26,AA,A,

Room 1 Consulting,C1:B1:F0:R021,AFA,15.26,AA,A,

Room 2 Consulting,C1:B1:F0:R022,AFA,15.26,AA,A,

Home Based Care,C1:B1:F0:R023,AHA,15.26,AA,A,

Passage,C1:B1:F0:R024,CAAB,32.84,AA,A,

Counselling Room,C1:B1:F0:R025,AGA,15.42,AA,A,

Room Triage/Observation,C1:B1:F0:R026,AAJ,12.53,AA,A,

Paraplegic WC,C1:B1:F0:R027,BE,3.24,AA,A,

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

38

Medicine Store,C1:B1:F0:R028,BP,8.32,AA,A,

Private Consult,C1:B1:F0:R029,AFA,4.92,AA,A,

Area Medicine Waiting,C1:B1:F0:R030,CAAK,10.2,AA,A,

Dispensary,C1:B1:F0:R031,BP,19.47,AA,A,

Scheduled Medicine Store,C1:B1:F0:R032,BP,4.4,AA,A,

Receiving/Holding,C1:B1:F0:R033,BPG,5.23,AA,A,

Food Parcels Store,C1:B1:F0:R034,BQR,5,AA,A,

Passage,C1:B1:F0:R036,CAAB,12.49,AA,A,

Structure,C1:B1:F0:R037,DA,471.52,I,A,

If the FAST comma delimited exchange file conforms to the standards above, you can import it directly

into the FAST ASSEMBLY LIBRARY by going to the System Administration tab of the FAST Main Form.

Select the Import .txt, .dat or.csv file File Into FAST option. The screen illustrated below in Figure 27

appears.

Figure 27: Select a FAST comma delimited import file

Choose an appropriate file extension with the dropdown indicated as ‘Files of type’. Three types of

extension are supported, i.e. .txt, .dat and .csv. Navigate to the directory where the input file is located.

The screen illustrated with Figure 28 appears.

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 10 September 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[PROPOSAL V.3]

39

Figure 28: Select a comma delimited file with a .txt extension

In the example two files are displayed. Select the Clinic_Example.txt file and select the Open command

button. The screen illustrated in Figure 29 appears. Select OK to continue the import. The data is imported

into the ASSEMBLY LIBRARY. After import you can rename the Assembly Code, Assembly Name and

Assembly Description fields to suit your particular description and naming conventions.

Figure 29: Confirm import of FAST comma delimited import file

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

40

APPENDIX C – FUNCTIONAL SPACE CLASSIFICATION

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

41

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

42

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

43

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

44

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

45

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

46

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

47

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

48

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

49

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

50

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

51

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

52

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

53

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

54

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

55

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

56

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

57

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

58

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

59

APPENDIX D – DEPARTMENT CLASSIFICATION

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

60

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

61

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

62

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

63

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

64

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

65

INFRASTRUCTUREUNITSUPPORTSYSTEMS(IUSS)PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

66

INFRASTRUCTURE UNIT SUPPORT SYSTEMS (IUSS) PROJECT

Health Facility Guides: 3 March 2014

Facility Assembly Schedule Toolkit briefing tool (FAST)

[DISCUSSION DRAFT 1.0]

67

REFERENCES

Conradie, DCU. 2000. The use of software systems to implement Case-based Reasoning enabled intelligent

components for architectural briefing and design. PhD, Faculty of Engineering, the Built Environment and

Information Technology, University of Pretoria, South Africa.

Cook, DD. 1997. Design and development of a grammar oriented parsing system. Master of Science in

Computer Science, California State University, Sacramento.

Gold Parsing System. 2014. GOLD Parsing System Multi-programming Language, Parser. Internet:

http://www.goldparser.org/. Accessed 11 March 2014.

Kolodner, JK. 1993. Case-based reasoning. San Mateo, California: Morgan Kaufmann Publishers.

Meyer, A and Steele, DJ. 2010. Access solutions: Tips, tricks, and secrets from Microsoft Access MVPs.

Wiley Publishing, Inc., Indianapolis, Indiana.

Pugh, S. 1996. Creating innovative products using total design. Reading, MA: Addison-Wesley.

Ulrich, KT and Eppinger, SD. 1995. Product design and development. New York: McGraw-Hill.

